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Struvite Chemistry & Morphology

Struvite was first identified in 1939, and its buildup in wastewater pipes has since
been reported as a frequent issue.
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L Preceded by two primary stages:
Nutrient overload * Nucleation (crystal birth)
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Chemical Equilibrium Models (CEM)

Numerous studies have explored the precipitation kinetics and the conditions under which struvite crystallizes

using chemical equilibrium models (CEM), which is guided by solution chemistry and thermodynamic principles.

Literature Review on CEM

Hanhoun et al., (2013) developed
a population balance model with a
thermodynamic framework to
predict particle size distribution
and control struvite nucleation and
growth kinetics.

Jiaetal,, (2017) leveraged the
Visual MINTEQ chemical
equilibrium model to precisely
improve fundamental system
variables, from anaerobic digester
effluent in a wastewater treatment
plant.

Gadekar & Pullammanappallil,
(2010) formulated a mathematical
model for the precipitation process,
integrating physicochemical
equilibrium principles, mass balance
calculations for struvite recovery.

Martin-Hernandez et al., (2020)
utilized a probability framework
embedded in the Monte Carlo
method, to develop surrogate
models for predicting the
formation of struvite and calcium
precipitates from cattle waste.

CEM Benefits:

* Reduce reagent costs.

« Somewhat mitigate the impact of inhibitory
ions such as Ca?*, K*, COs%, and

e Improve struvite recovery efficiency and purity.

CEM Struggle: Chemical equilibrium models
often struggle to accurately capture
nucleation, crystal growth, and overall
struvite precipitation due to the complex
interplay of factors such as pH,
temperature, ionic strength, and reactant
concentrations.




Critical Parameters of Struvite Precipitation

A supersaturated solution

The composition of
(SS) promotes crystallization 2

Based on various studies, Plays a crucialrolein
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Consistent findings from literature

Input Parameters Struvite crystallization Properties present Applications
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treatment

Electrodialysis

ED is an advanced membrane-based
technology that operates on the principle
of ion migration through selective ion
exchange membranes (IEMs), offering a
highly efficient method for ion separation
and concentration.
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Previous Lab Findings: Experimental Inference

) NB: This research builds upon the prior hypothesis of my
Dissolved lab member Khan (2023), who found that electrified
Species membranes show significant potential as an external
energy source to improve ion mobility and reaction kinetics.

Hydration
Shell

&+ &+ n
Desorption A ‘ Y ‘ .
5 5. 5 5+ O+ &+ .
5=

,e w “U

5+ &+

Wastewater

Benefits
* Reduced induction time

. * |ncreased crystal growth

Whatis it y g
- doing?
Electromagnetic Sustained | Sufficient
Field electric | concentration
field of ions
Dissolved species such as sodium, chloride, > Precipitation

magnesium, phosphate, potassium, ammonium,

New pH happens
bicarbonate, sulfate. P PP




Previous Lab Findings: Struvite Induction Time and
Nucleation Rate with and without Hydroflow
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Previous Lab Findings: Effect of Hydroflow on

Temperature and pH
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Previous Lab Findings: Visualization of Membrane

-ouling
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Previous Lab Findings: Removal Efficiency from Side-
stream Wastewater
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Previous Lab Findings: Flux Data for Bench- & Pilot-
scale z - - ,
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UVM Filter Phlo Trailer
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Some of the components in the mobile
Pe-Phlo system.




technologies and operational scales.
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Fut u re Re Sea rC h Advanced Chemical Modeling and Optimization of Struvite Recovery for

Sustainable Wastewater Treatment Systems
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In process control, two different types
of modeling are most commonly
seen: mechanistic models (MM) and
black-box models (BBM).
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Key Takeaways

= Struvite precipitation occurs when solution is supersaturated.

= Pe-Phlo system works well for small-medium scale operation.

= EMF caninduce rapid nucleation (reduced induction time & increased
crystal growth).

= Factor indicative of the total effect of EMF and model(s) that truly
explain this mechanistically is of significant interest.

= Al-driven control can predict supersaturation level, improve chemical
dosing, regulate ammonia levels through microbial activity, and
ultimately reduce process variability and operational cost.
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