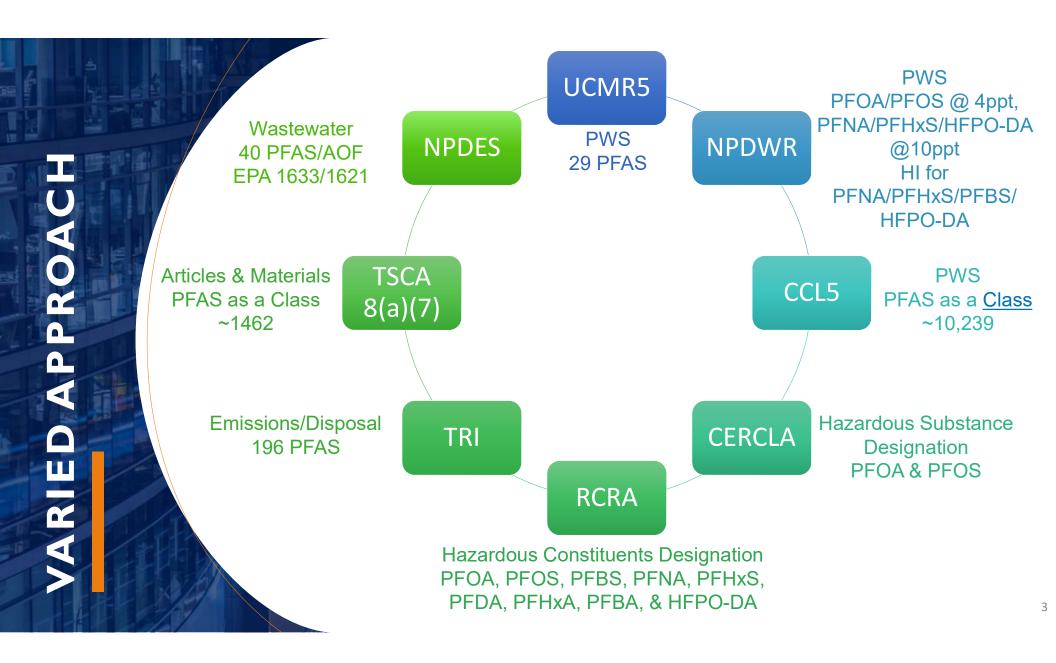
In-depth Characterization of PFAS in Wastewater, a More Comprehensive Analysis

March 2025

Taryn McKnight Vice President, PFAS Practice Leader Eurofins Environment Testing



Environment Testing

Copyright © 2023 Eurofins

REGULATORY LANDSCAPE

Key Regulations - ADOPTED

Safe Drinking Water Act

Effective June 25, 2024

- MCLs for PFOA/PFOS at 4 ppt, PFHxS/PFNA/GenX at 10 ppt
- PWSs required to monitor quarterly for first 3 years, compliance required after 5 years
- UCMR5 monitoring for 29 PFAS underway through 2025

CERCLA

Effective July 8, 2024

- Order investigation and remediation of PFOA/PFOS, including cost recovery;
- Re-open closed sites;
- Private parties have cause of action for cost recovery; and
- PFOA/PFOS included in the scope of Phase 1s to satisfy the AAI rule

TSCA

Effective Sept 18, 2023

- Manufacturers and importers required to report regarding PFAS uses, production volumes, disposal, exposures, and hazards
- TRI reporting annually for 196 PFAS, no more de minimis level as of Oct 2023

Key Regulations – IN PROGRESS

Clean Water Act

State Implementation

- EPA issues guidance to state permit writers and pretreatment authorities to address PFAS
- States begin adding 40 PFAS by 1633 to permits in 2024
- EPA develops Effluent Limitation Guidelines

RCRA

Proposed Rule

- PFOA, PFOS, PFBS, PFNA, PFHxS, PFDA,
 PFHxA, PFBA, & HFPO DA proposed as RCRA
 Hazardous Constituents
- Subject to Corrective Action at hazardous waste treatment/ storage/disposal facilities

Clean Air Act

In Development

- EPA publishes OTM-45/50 to measure PFAS in source emissions
- EPA publishes destruction guidance
- EPA lays groundwork to list PFAS as HAPs (a prerequisite to require them in air permits)

WASTEWATER

11111111111111

111111111111

terret - constant danst -

Effluent Guidelines Program

Program Plan 15

- Propose limits for chemical, plastics, synthetic fiber manufacturers (NDAA June 2024)
- ✓ Expand Textiles study (NDAA June 2025) *public comment reopened*
- ✓ Revise ELGs for Landfills category (NDAA June 2025)
- Not pursuing action for the Electrical and Electronic Components Category (NDAA June 2025)
- ✓ Will monitor the Pulp, Paper, and Paperboard Category and Airports
- Leather tanning/finishing, paint formulating, and plastics molding categories (NDAA December 2026)

NPDES News

https://www.epa.gov/system/files/documents/2023-01/11143_ELG%20Plan%2015_508.pdf#page=48 https://www.epa.gov/system/files/documents/2023-01/11143_ELG%20Plan%2015_508.pdf

Was with OMB for review...

2023 NDAA, SEC. 5883. CLEAN WATER ACT EFFLUENT LIMITATIONS GUIDELINES

The Administrator shall publish in the Federal Register effluent limitations guidelines and standards for priority industry categories, not later than the following dates...

Effluent Guidelines Program

Program Plan 15

- EPA to initiate a Publicly Owned Treatment Works (POTW) influent study of PFAS
- ✓ Information Collection Request (ICR) initiated. Submitted to OMB for review
- ✓ Public comments closed May 28, 2024. EPA reopened public comments in Oct 2024 for additional 30 days
- ✓ Collect data in *2025-2026*
- ✓ Sampling and analysis via EPA 1633 and 1621

https://www.govinfo.gov/content/pkg/FR-2024-03-26/pdf/2024-06408.pdf

Addressing PFAS Discharges in State-Issued NPDES Permits EPA issues guidance to state permit writers and pretreatment authorities to address PFAS in 2022 and 2025

Implementing Case-by-Case Technology-Based Effluent Limitations in NPDES permits for Pollutants of Emerging Concern A "How-To" for NPDES Permit Writers

Tools and Resources

Example Permit Language, State and Local PFAS Strategies, and Other PFAS Permitting Resources

BMP and Source Reduction Resources

 Fact Sheet: Pollution Prevention Strategies for Industrial PFAS Discharges (pdf) (713.1 KB)

https://www.epa.gov/npdes/industrial-wastewater#pfas

RISK ASSESSMENT PFOA & PFOS IN BIOSOLIDS

https://www.epa.gov/biosolids/draft-sewage-sludge-risk-assessmentperfluorooctanoic-acid-pfoa-and-perfluorooctane

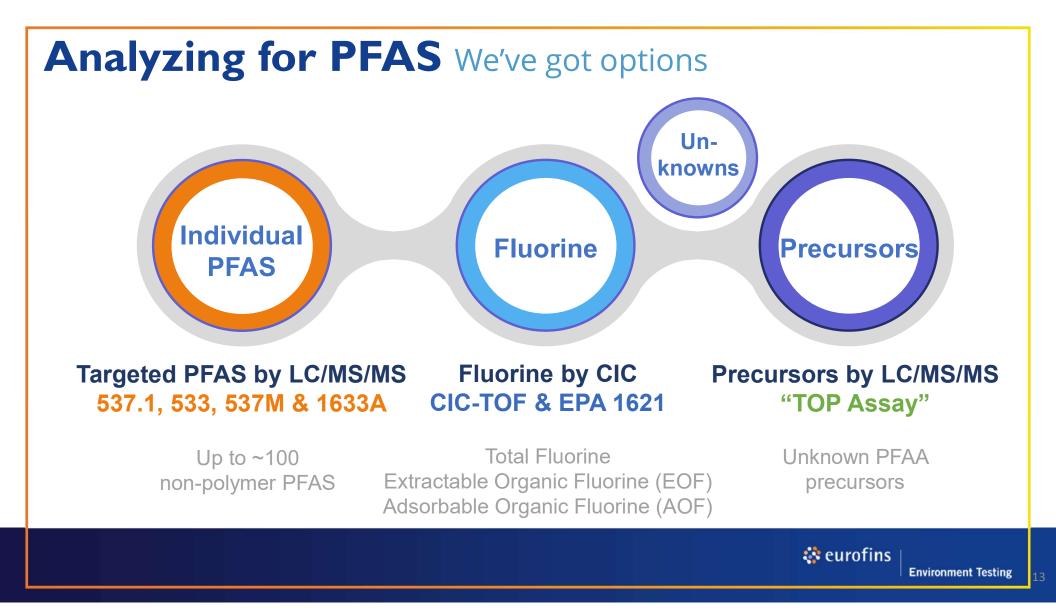
EPA Releases Draft Risk Assessment to Advance Scientific Understanding of PFOA and PFOS in Biosolids

January 14, 2025

Risk assessment only. First step of many towards any regulation.

Modeling only of hypothetical human health risks.

Focused on a specific and narrow population i.e. those living on or near impacted properties


Modeling suggest under certain conditions, landapplying sludge with a detectable level (≥1 ppb) of PFOA or PFOS could result in human health risks exceeding the agency's acceptable thresholds.

METHOD OPTIONS

Where to Begin?

WHAT WILL THE DATA BE USED FOR

Developing a Conceptual Site Model Determining the extent of contamination Investigating sources of contamination Assessing human health impacts Implementing a remediation plan Assessing efficacy of a treatment system A mountain of questions when addressing the mostly unknown

CONVENTIONAL TOOLS

TARGETED ANALYSIS

The analysis of specific target analytes with known CAS numbers and analytical reference standards

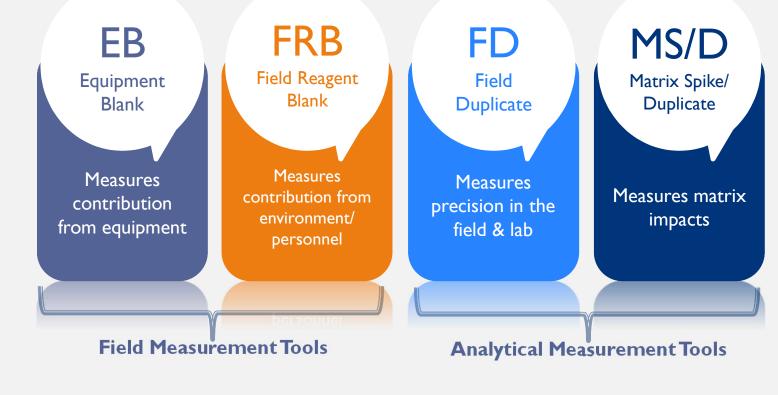
- EPA Standard Methods
- ASTM Methods
- User-Defined Methods
 - Regulatory derived target analyte lists
 - Laboratory derived target analyte lists
 - Site-specific target analyte lists

EPA Methods EPA 537.1(2020) EPA 533 (2019) EPA 8327 (2021) EPA 1633A (2024)

User-defined Methods ''537 / 1633A Modified'' Laboratory SOP

Drinking Water

533	537.1
Drinking Water	Drinking Water
Branched/Linear Isomers -YES	Branched/Linear Isomers -YES
Compounds: 14 the same / 15 unique	Compounds: 14 the same / 4 unique
SPE WAX	SPE SDVB
Hold Time: 28/28 days	Hold Time: 14/28 days
LCMSMS with confirmation ion	LCMSMS - no confirmation ion
Isotope Dilution	Internal standard
Recovery Correction - YES	Recovery Correction – NO
RLs: Not defined	RLs: 2ppt - 40ppt


EPA Method for NPW/Solids

EPA 1633A

- Targeted Analysis of 40 PFAS
- Non-Potable Water, Soil, Sediment, Biosolids, Leachate, Tissue
- WAX Solid Phase Extraction (SPE)
- LCMSMS with Isotope Dilution Quantitation
- Detection limits: 0.4-10 ng/L (aqueous) / 0.05-2 ng/g (solids)
- Multi-Lab Validated

Final version released in Dec 2024, NOT PROMULGATED

Recommended Field Quality Control

FIELD QC

Copyright © 2023 Eurofins

S	Compounds Included in	EPA 1633A	Target Compounds Not	Part of EPA 1633A
Analysi	Perfluorobutanoic acid (PFBA)	NEtFOSA	10:2 FTS	EVE Acid
	Perfluoropentanoic acid (PFPeA)	NMeFOSA	6:2 FTCA	PFO5DA
ה	Perfluorohexanoic acid (PFHxA)	NMeFOSAA	8:2 FTCA	PMPA
Ĕ	Perfluoroheptanoic acid (PFHpA)	NEtFOSAA	10:2 FTCA	PEPA
	Perfluorooctanoic acid (PFOA)	NMeFOSE	6:2 FTUCA	МТР
	Perfluorononanoic acid (PFNA)	NEtFOSE	8:2 FTUCA	PS Acid
S	Perfluorodecanoic acid (PFDA)	4:2 FTS	10:2 FTUCA	Hydro-PS Acid
Σ	Perfluoroundecanoic acid (PFUnA)	6:2 FTS	PFECHS	R-PSDA
โ	Perfluorododecanoic acid (PFDoA)	8:2 FTS	PFPrS	Hydrolyzed PSDA
Σ	Perfluorotridecanoic acid (PFTriA)	9CI-PF3ONS	PFPrA	R-PSDCA
	Perfluorotetradecanoic acid (PFTeA)	11CI-PF3OUdS	PFMOAA	6:2 diPAP
U	Perfluorobutanesulfonic acid (PFBS)	DONA	PFECAG	8:2 diPAP
U	Perfluoropentanesulfonic acid (PFPeS)	HFPO-DA (GenX)	PFO4DA	6:2/8:2 diPAP
	Perfluorohexanesulfonic acid (PFHxS)	3:3 FTCA	PFO3OA	10:2 diPAP
S	Perfluoroheptanesulfonic Acid (PFHpS)	5:3 FTCA	PFO2HxA	10:2 FTOH (RL=Iug/L)
Σ	Perfluorooctanesulfonic acid (PFOS)	7:3 FTCA	R-EVE	8:2 FTOH (RL=Iug/L)
S	Perfluorononanesulfonic acid (PFNS)	NFDHA	NVHOS	7:2 FTOH (RL=Iug/L)
Σ	Perfluorodecanesulfonic acid (PFDS)	PFMBA	Hydro-EVE Acid	6:2 FTOH (RL=Iug/L)
Ū	Perfluorododecanesulfonic acid (PFDoS)	PFMPA	Perfluoro-n-octadecanoic acid (PFODA)	4:2 FTOH (RL=Iug/L)
	Perfluorooctanesulfonamide (FOSA)	PFEESA	Perfluoro-n-hexadecanoic acid (PFHxDA)	

EMERGING TECHNOLOGIES

The analysis of analytes or matrices beyond what is supported by standard published EPA methods

- Draft or Non-Standard Methods
- User-Defined Methods
 - Program specific targets
 - Screening applications
 - Litigation derived targets

PFAS in Air

Source & Ambient

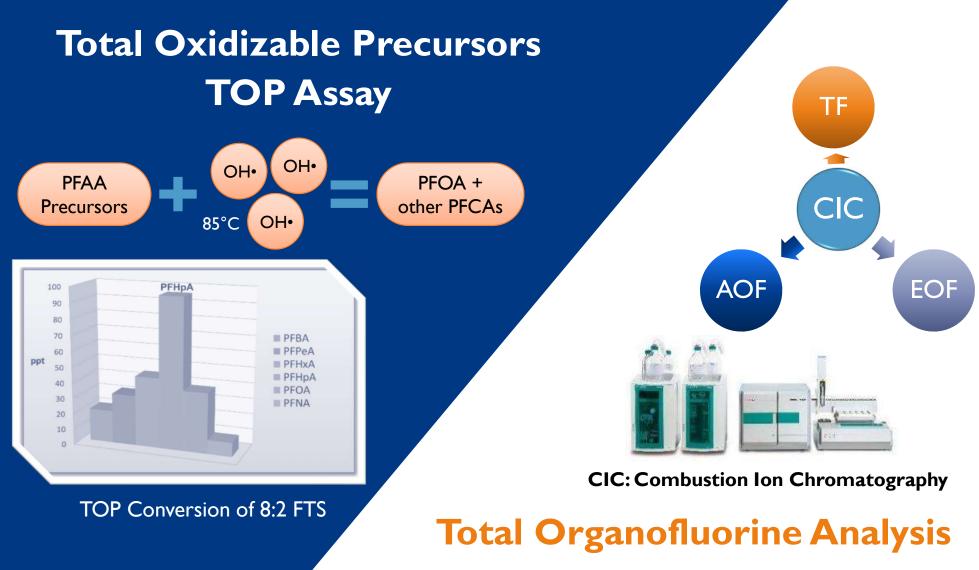
Neutral PFAS FTOHs FTAcs FTMAcs

Ultra-Shorts C2-C4

NON-TARGETED TECHNOLOGIES

The analysis of analytes without known CAS numbers or analytical reference standards, or the analysis of a proxy analyte(s)

- Draft or Non-Standard Methods
- User-Defined Methods
 - Program specific targets
 - Screening applications
 - Litigation derived targets


TOP Assay

Total Oxidizable Precursors

AOF/EOF/TF

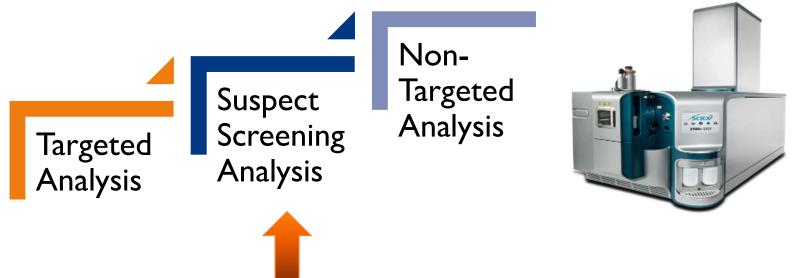
Adsorbable Organic Fluorine Extractable Organic Fluorine Total Fluorine

NTA Non-Target Analysis

EPA Method 1621

Final version released in Dec 2024, NOT PROMULGATED

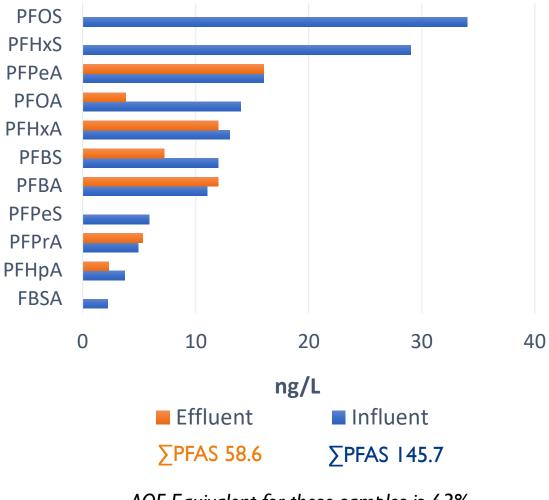
- Adsorbable Organic Fluorine (AOF)
- Screening analysis for 'Total PFAS'
- Applies to aqueous samples
- Multi-lab validated


- Adsorbs contaminants onto granular activated carbon, removal of inorganic fluoride with nitrate solution, followed by combustion of the carbon
- Method Detection Limit: I.5 μg F-/L

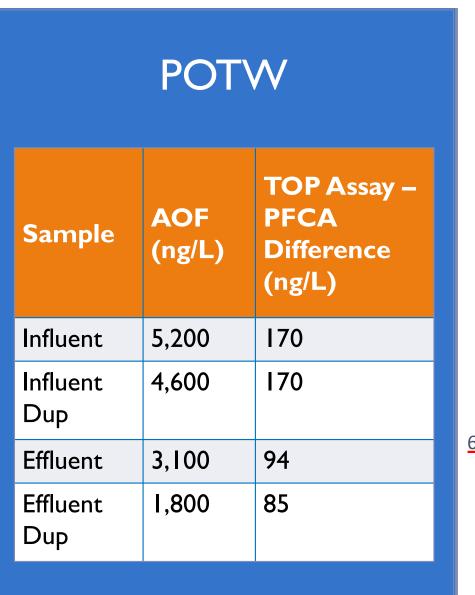
Non-Target Analysis

LC-QToF-MS

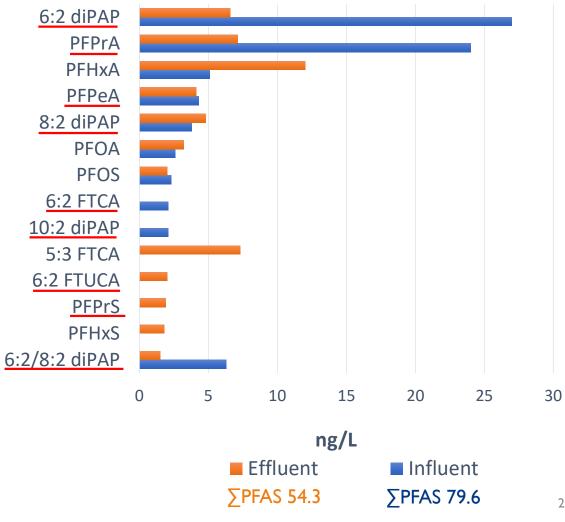
Liquid Chromatography Quadrupole Time of Flight Mass Spectrometry



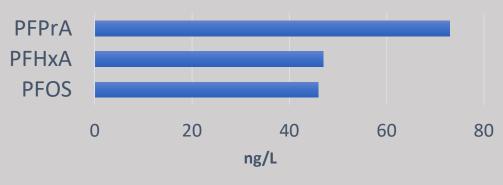
COMPARING ANALYTICAL TOOLS

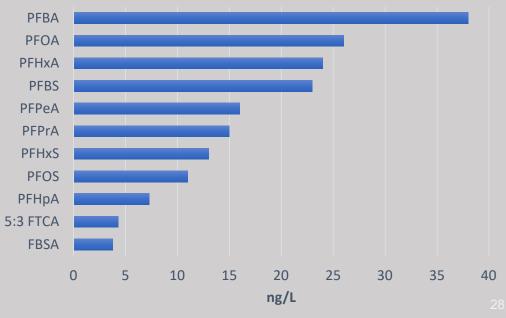

WWTP Study

Sample	AOF (ng/L)	TOP Assay – PFCA Difference (ng/L)
Influent	1,300	110
Influent Dup	1,300	120
Effluent	I,500	220
Effluent Dup	1,100	230


Site 1, Private WWTP Influent & Effluent

AOF Equivalent for these samples is 63%

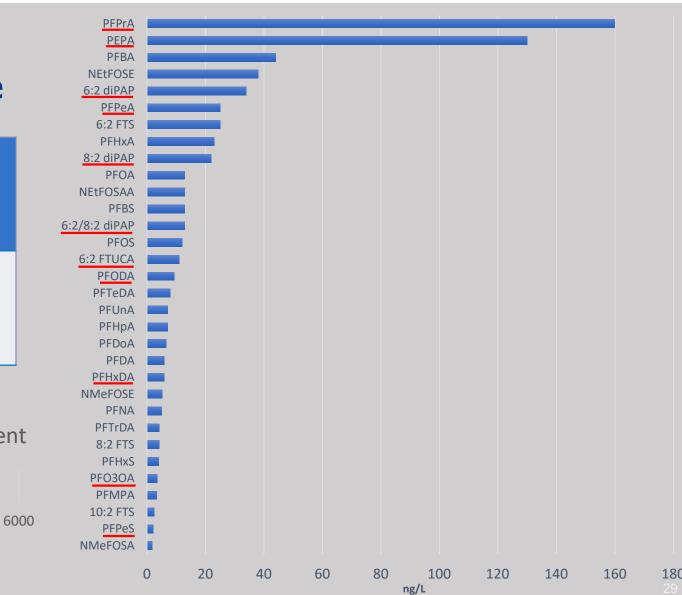

Site 3, POTW Influent & Effluent


WWTP Study Site 4 – Industrial Discharge

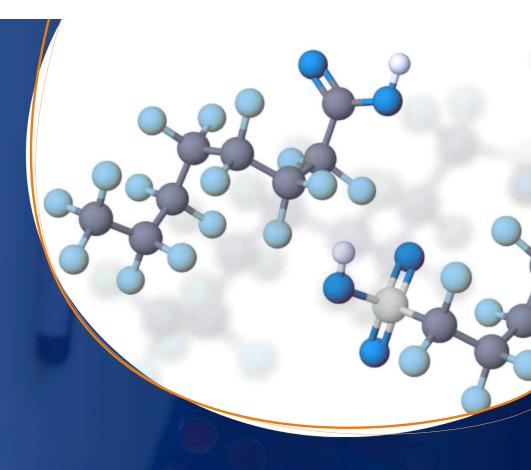
Sample	AOF (ng/L)	TOP Assay – PFCA Difference (ng/L)
Dairy Manufacturer, Effluent	33,000	360
Landfill <i>,</i> Effluent	1400	100

Dairy Manufacturer Effluent

Landfill Effluent



Site 4 – Industrial Discharge


Sample	AOF (ng/L)	TOP Assay – PFCA Difference (ng/L)
Effluent Commercial Laundry	39,000	6,100

Commercial Laundry Effluent

ASSESSING PFAS DESTRUCTION

Copyright © 2022 Eurofins

Destruction

"Mineralization of PFAS" means all PFAS, not just the few PFAS routinely measured for in environmental matrices

Demonstration

What analytical tools are available to demonstration destruction is complete?

Mass Balance

System-wide mass balances for <u>all</u> PFAS not yet achieved; limiting factor is the analytical chemistry

Copyright © 2022 Eurofins

STRUCTI

ш

Current Analytical Tools

• EPA 1633A for solid/aqueous:

- 40 anionic PFAS
- C4-C14

• EPA OTM-45/50 for gaseous

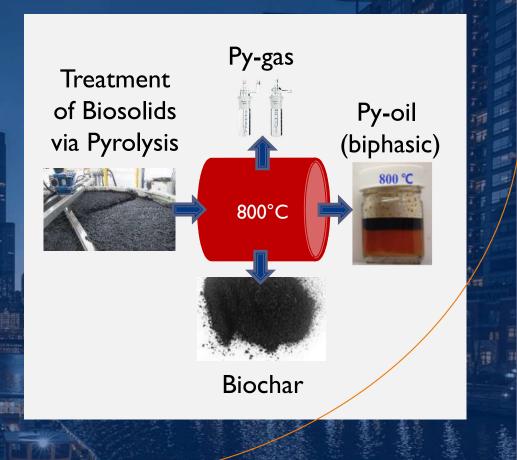
50 anionic, C4-C14 PFAS
30 non-polar, C1-C8 PFAS

• TOF for solid/aqueous/gaseous:
• Total Oxidizable Precursors (TOP)
• Total Fluorine (TF)
• Total Organic Fluorine (TOF)

ransformatio

TOPA or TOF

Targeted PFAS


Matrix Specific Challenges

Each matrix requires accurate measurements to determine if complete destruction is occurring or if products of incomplete destruction are generated

These matrices may be biphasic or corrosive, and complex. All requiring tailored analytical techniques to ensure maximum extraction efficiency and matrix mitigation is achieved

Copyright © 2023 Eurofins

- alles

Compound Specific Challenges

Target Compounds Not Part of Draft 1633 (RLs = 2-20ng/L)

PEPA MTP

PS Acid

Hydro-PS Acid R-PSDA

Hydrolyzed PSDA R-PSDCA

6:2 diPAP 8:2 diPAP

6:2/8:2 diPAP 12:2 FTOH

10:2 FTOH 8:2 FTOH

7:2 FTOH 6:2 FTOH

4:2 FTOH 10:2 FTAc

8:2 FTAc 10:2 FTAcr 8:2 FTAcr 6:2 FTAcr 4:2 FTAcr

Compounds Included in EPA Draft 1633 (RLs = 2-5ng/L)

compositio inclució in Livito	idit 2000 (ites 2 of graf	rai Sec compounds river are or brain
Perfluorobutanoic acid (PFBA)	NEtFOSA	Perfluoro-n-octadecanoic acid (PFODA)
Perfluoropentanoic acid (PFPeA)	NMeFOSA	Perfluoro-n-hexadecanoic acid (PFHxDA)
Perfluorohexanoic acid (PFHxA)	NMeFOSAA	10:2 FTS
Perfluoroheptanoic acid (PFHpA)	NEtFOSAA	6:2 FTCA
Perfluorooctanoic acid (PFOA)	NMeFOSE	8:2 FTCA
Perfluorononanoic acid (PFNA)	NEtFOSE	10:2 FTCA
Perfluorodecanoic acid (PFDA)	4:2 FTS	6:2 FTUCA
Perfluoroundecanoic acid (PFUnA)	6:2 FTS	8:2 FTUCA
Perfluorododecanoic acid (PFDoA)	8:2 FTS	10:2 FTUCA
Perfluorotridecanoic acid (PFTriA)	9CI-PF3ONS	PFECHS
Perfluorotetradecanoic acid (PFTeA)	11CI-PF3OUdS	PFPrS
Perfluorobutanesulfonic acid (PFBS)	DONA	PFPrA
Perfluoropentanesulfonic acid (PFPeS)	HFPO-DA (GenX)	PFMOAA
Perfluorohexanesulfonic acid (PFHxS)	3:3 FTCA	PFECAG
Perfluoroheptanesulfonic Acid (PFHpS)	5:3 FTCA	PFO4DA
Perfluorooctanesulfonic acid (PFOS)	7:3 FTCA	PFO3OA
Perfluorononanesulfonic acid (PFNS)	NFDHA	PFO2HxA
Perfluorodecanesulfonic acid (PFDS)	PFMBA	R-EVE
Perfluorododecanesulfonic acid (PFDoS	S) PEMPA	NVHOS
Perfluorooctanesulfonamide (FOSA)	PFEESA	Hydro-EVE Acid
		EVE Acid
		PFOSDA
		PMPA

TARGETED ANALYSIS

Extraction media, columns, solvents, detectors, and instrument parameters used will minimize the range of PFAS identified, typically less than 100 PFAS like the ones listed in this table

Copyright © 2022 Eurofins

Targeted PFAS

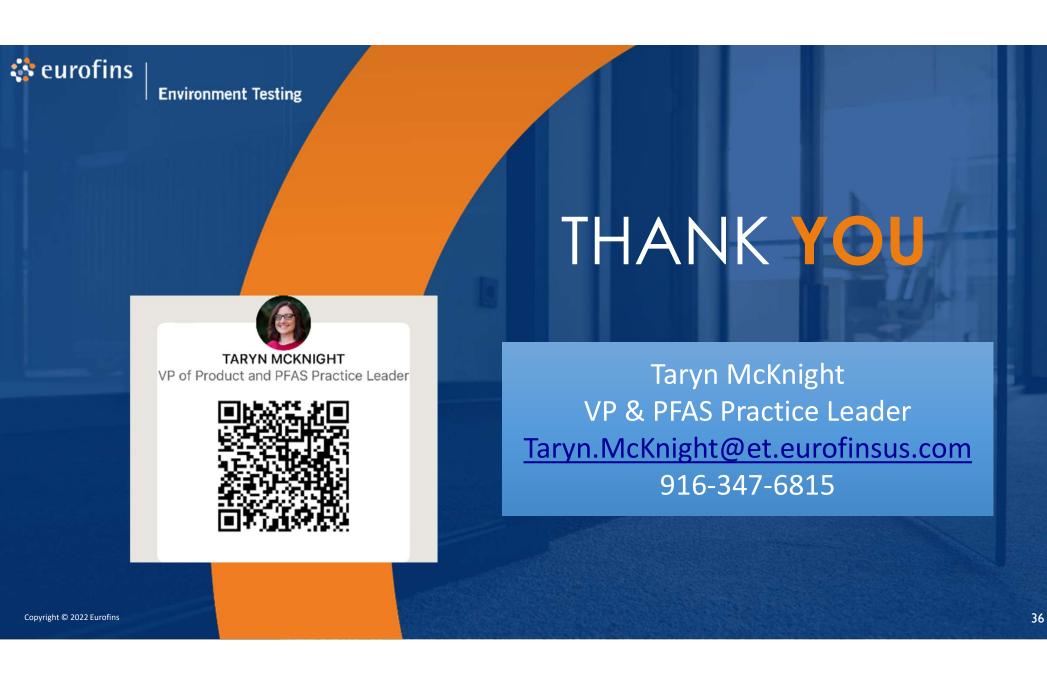
All Matrices – ~ 100 PFAS

Strengths: Selectivity Sensitivity at ~1-20ppt Can be used for risk assessment Weaknesses: Limited list of compounds

Non-Target Analysis All Matrices – Unknowns

Strengths: Ability to identify 'unknowns' with specificity

Ability to conduct novel compound identification Weaknesses Limited to current libraries Limited quantitation & sensitivity



TOP Assay

All Matrices – Precursors Strengths: Sensitivity at ~1-20ppt Specific to 'unknowns' with potential to convert to risk drivers Weaknesses: Not specific Does not complete a mass balance

Total Organic Fluorine All Matrices – Organic Fluorine

Strengths: Closest to a mass balance Weaknesses: Sensitivity at ~1ppb No selectivity Potential for high bias from inorganic fluorine & low bias from sample prep

